[Dorji Tshezom] - Fab Futures - Data Science
Home About

Day 1- sessionΒΆ

Brief History about Data ScienceΒΆ

Professor Neil briefly explained the importants od data science with many examples as follow.

Image("images/Examples.png")

PracticesΒΆ

How to log into the JupyterlabΒΆ

There are many ways to log into jupyternotebook, however here we can simply log in using the link shared via our email. Simply need to open the mail with link and click there, automatically we will into the jupyternotebook page.ΒΆ

Documentation in jupyternotebookΒΆ

It was really confusing for me since i am very new to this platform, i completely felt like i am just an Alien on the earth, however with help of coolegues and Anith sir i got little insight about it.But exploring and watching the tutorial i was able to document the work. However, failed to publish the work which was bit worrrisome yet i tried my best. Click here to watch the video

Documenting as per my knowledgeΒΆ

** To document our work in jupyternotebook; first thing we need to know the work area and its features. Once we are famalier with it, its very convenient to document our work. I have learned the following features first and started documenting my work.**

Features are:ΒΆ

1.Notebook TitleΒΆ

2.Menu BarΒΆ

3. ToolbarΒΆ

4. CellsΒΆ

5. Output AreaΒΆ

6. KernelΒΆ

7. File Browser (Left Sidebar)ΒΆ

8. Cell Execution OrderΒΆ

9.AutosaveΒΆ

Types of folders in working page are:ΒΆ

  1. class folder
  2. Working folder with my name

From class folder i can get all resources covered by professor whereas in my folder i can document my work in detail. After that all the work i have done in my folder need to publish it. It was one of confusing session for me. It was really confusing so i messes not publishing any work done, though i did everything i lost the track to publish it.

Working folder [ will be with your name]ΒΆ

Files under my working folder/dorji-tshezom/ hasΒΆ

datasets: Where i uploaded my datasetsΒΆ

Images: I uploaded any images inside this foldersΒΆ

about.ipynb: Write my introduction and upload the profileΒΆ

Create weekly folder to work on assignment and hold our own workΒΆ

  • i can create my own as follow but need to publish my work in my website

    Need to link my work as follow:ΒΆ

    -I have work inside the folder i have created for week 1 -need to changed, tracked, command and push the work -click on home.ipynb folder in working folder -will see week 1 cell -double click here -link the week1 folder there to diplay my work in my website.

usage of gitΒΆ

  1. Save Versions of Your Work

Git helps you save different versions of your code or documents so you can go back anytime if something goes wrong.

βœ… 2. Track Changes

Git records who changed what and when, making your work organized and easy to follow.

βœ… 3. Work Together Easily

Git allows many people to work on the same project, combine updates, and avoid mixing up files

Working File EditionΒΆ

  1. Edit Code in a Cell

Click inside a code cell and type or change your code.

Press Shift + Enter to run it again.

  1. Edit Text in Markdown Cells

Click inside a Markdown cell to change text, headings, or links.

Press Shift + Enter to see the formatted result.

  1. Add or Delete Cells

Insert a new cell: Click Insert β†’ Insert Cell Above/Below.

Delete a cell: Select the cell and click Delete (or ❌ button in toolbar).

  1. Move Cells Up or Down

Rearrange your work by selecting a cell and using the up ↑ or down ↓ buttons in the toolbar.

Markdown syntax i have learned from ChatGPTΒΆ

It was very ---useful syntax i have learnedΒΆ

How to change and save the files or work in gitΒΆ

  • got to git icon on left hand side
  • There are two features: Changes & History
  • got to changes feature
  • under it, go to untracked & Changed accordingly
  • click on {+} button
  • -write over changes on summery dashboard below
  • click on commit
  • sucessful comit comment will apear
  • then go to cloud like structure on above task bar
  • will see orange dot
  • click on it then your data or work will push and will be in respository folder

Types of Language in JupyternotebookΒΆ

-The jupyternotebook has its own lnguage. - There are 3 types of languahes -They are - code -raw -markdown and its very important know about it. since we need it to execute any work on jupyternotebook. usage of markdown is quite easy and found workable but code is very difficult for me to understand. And i am in fear thinking that how can i visualize the data in later part.

Cell TypeΒΆ

-Code: Write & run code

-Markdown: Writetext, formatted text, notes, headings etc..

-Raw: Keep text exactly as-is

How to run the cellΒΆ

-click on run icon on taskbar [it is in triangular shape]

-just click Shift+Enter

Add the cellΒΆ

-click on plus button on top

-click on box plus button on right side of recent cell

-press shift & enter

  • can delete using delete icon on right hand side on existing cell

How to add hyperlink to the vedio or tutorialΒΆ

Watch this video

Replace VIDEO_ID with the actual video ID or paste the full URL.

Press Shift + Enter to render.

Example:

markdown

Python Tutorial

Adding imageΒΆ

-upload the image using upload icon on taskbar -display image inside the image folder inside our name folde eg dorjitshezom -write the code

  1. <
  2. img 3.alt
  3. =
  4. ""
  5. src
  6. =
  7. "
  8. images/working page.png ** just pasteimage folder name-click copy the path**
  9. "
  10. width
  11. =
  12. "
  13. 600
  14. " 16.>
  15. we can add style and there are lot more option i have just kept it simple since i am really poor in code
  16. run it with markdown

Assignment on datasetsΒΆ

what is datasets?ΒΆ

A dataset is a collection of data organized in a structured way for analysis or processing.

First of all i explore the source from where i can download the datasets easily.ΒΆ

-And i came to laern there are many sources but from the session and through youtube i got to learned these five reliable data source:

Kaggle – https://www.kaggle.com/datasets

Huge collection of datasets for machine learning, data science, and competitions.

UCI Machine Learning Repository – https://archive.ics.uci.edu/ml/index.php

Classic datasets for research and learning.

Google Dataset Search – https://datasetsearch.research.google.com/

Search engine to find datasets across the web.

data.gov – https://www.data.gov/

Official U.S. government datasets, covering many topics.

AWS Open Data – https://registry.opendata.aws/

Large-scale datasets hosted by Amazon Web Services

I really wanted to know the sources of dataset in Bhutan and from CHATGPT i get to know following sources. And using it i also downlaoded the dataset from there and its is below.ΒΆ

How to download my datasetsΒΆ

-just went to data.gov.bt -select the data -dowloaded it -with upload icon uploaded the datasets inside dataset folder -used following syntax to run it or display my datasets on my jupyternotebook -

What i did first before picking the datasets here in my notebookΒΆ

1. import pandas in jupyter notebook environment:ΒΆ

-import pandas as follow

InΒ [10]:
import pandas as pd
InΒ [11]:
datasets = pd.read_excel ("Final_report_tables_2021AS.xlsx")
InΒ [12]:
datasets
Out[12]:
Unnamed: 0 Unnamed: 1 Unnamed: 2 Unnamed: 3 Unnamed: 4 Unnamed: 5 Unnamed: 6 Unnamed: 7 Unnamed: 8 Unnamed: 9 ... Unnamed: 15 Unnamed: 16 Unnamed: 17 Unnamed: 18 Unnamed: 19 Unnamed: 20 Unnamed: 21 Unnamed: 22 Unnamed: 23 Unnamed: 24
0 NaN Irrigated Paddy NaN NaN Upland Paddy NaN NaN Maize NaN NaN ... NaN Barley NaN NaN Millet NaN NaN Quinoa NaN NaN
1 Dzongkhag Sown Area (Acre) Harvested Area (Acre) Production (MT) Sown Area (Acre) Harvested Area (Acre) Production (MT) Sown Area (Acre) Harvested Area (Acre) Production (MT) ... Production (MT) Sown Area (Acre) Harvested Area (Acre) Production (MT) Sown Area (Acre) Harvested Area (Acre) Production (MT) Sown Area (Acre) Harvested Area (Acre) Production (MT)
2 Bumthang 112.732886 108.73793 164.98479 0 0 0 0.95405 0.477025 0.276172 ... 303.913949 322.13337 284.32811 148.17781 2.950391 1.229329 0.983464 0.318016 0.318016 0.19081
3 Chukha 1047.123288 907.49028 1539.711124 55.618929 45.462151 30.29093 1494.45484 1153.47943 1446.529806 ... 121.949055 47.090664 41.795427 20.235387 362.342557 323.000712 147.827759 4.241636 3.50086 1.423413
4 Dagana 2067.202705 1862.639608 2450.662581 30.711222 29.497675 7.568256 2364.611317 1717.412537 2001.271484 ... 86.097623 50.407894 44.798978 19.547031 181.607689 163.633424 79.192313 0.020625 0.020625 0.010313
5 Gasa 96.28023 95.85609 129.405731 0 0 0 0.101794 0.101794 0.102507 ... 0 88.403578 88.403578 78.296633 0 0 0 0 0 0
6 Haa 79.733842 72.28404 87.158778 11.206142 6.8386 2.632024 123.450042 92.860329 111.965722 ... 117.073964 54.164905 45.102258 21.944014 39.273974 33.101017 17.395902 0.493156 0.197262 0.098631
7 Lhuentse 775.698856 732.160847 1344.167739 42.796714 40.82313 37.667299 837.10642 742.14545 1241.239615 ... 0.276344 0.876041 0.265116 0.110465 64.07706 57.423392 37.073985 7.354234 6.173504 2.632887
8 Mongar 510.534181 474.609101 554.94201 32.450064 25.228099 19.3967 3757.768264 3179.649487 4369.035019 ... 37.59116 382.324291 339.815665 176.609771 18.64919 16.287487 7.470507 10.04975 10.046235 4.145776
9 Paro 2064.619382 1943.878563 5174.280382 2.280268 2.280268 0 23.419974 18.906335 9.847969 ... 33.651963 114.616724 105.655364 55.681227 3.391873 2.924622 2.080242 0 0 0
10 Pema Gatshel 13.870687 8.303635 7.839475 7.356314 6.430881 1.425101 1806.791599 1550.323932 4204.505938 ... 47.365862 10.619656 9.554694 5.171116 96.85006 89.922234 48.875159 0.613478 0.613478 0
11 Punakha 3331.304643 3084.985437 6509.573596 9.549422 6.982755 8.213701 159.099818 117.028312 147.753276 ... 28.570123 30.394357 28.523539 14.459545 1.401682 1.401682 0.729066 2.672176 2.672176 1.202479
12 Samdrup Jongkhar 1395.702944 1333.394074 2143.258362 26.978225 26.308587 4.997038 2138.034412 1990.913688 2750.260888 ... 334.525306 53.968285 52.358999 29.430664 78.440588 72.249176 34.631051 2.798599 2.798599 1.250664
13 Samtse 3568.334586 3261.784346 4011.487764 67.874905 56.215996 54.905197 3420.394966 2705.036622 2951.338215 ... 94.483006 11.744996 9.83607 3.599941 637.431767 570.47189 273.184071 12.879199 12.879199 4.322315
14 Sarpang 2986.751896 2672.574141 4202.028646 55.273175 52.259947 16.500786 2082.89788 1538.598138 2265.057124 ... 51.114088 0.652066 0.652066 0.173884 433.458823 401.192128 209.730817 3.154177 3.00658 1.051913
15 Thimphu 271.891408 233.83054 566.02558 3.113676 3.113676 0 42.04696 29.001387 7.944906 ... 4.393637 56.560976 43.13939 21.694171 1.03125 1.03125 0.61875 0 0 0
16 Trashigang 928.779432 822.66838 1505.769389 96.943459 76.607449 76.415062 2132.88839 1665.8931 3493.193651 ... 111.36855 84.675878 66.345809 36.905755 38.042749 34.757382 17.998744 31.968631 29.179726 14.894954
17 Trashi Yangtse 608.720176 538.577089 1014.921947 74.29526 62.987464 69.611825 758.485 622.32144 1520.870188 ... 4.089813 6.244887 5.965558 3.367283 189.462948 184.554054 104.320124 2.219538 2.019649 0.693819
18 Trongsa 1184.652712 989.07941 1573.956888 19.56991 13.912578 14.321315 421.07321 267.77272 467.312492 ... 147.81919 318.37923 281.47903 145.23953 43.195698 36.199705 17.234522 3.883309 2.265264 1.035549
19 Tsirang 1600.505245 1450.540697 1855.405991 45.593114 44.626006 0.629775 2097.007121 1516.746231 1923.444617 ... 37.951542 4.380883 3.252851 1.005365 169.944128 154.782719 65.150071 7.219005 5.910754 0.622459
20 Wangdue Phodrang 2593.454821 2244.607677 4470.44359 29.115146 22.053403 31.398577 143.925444 109.018382 195.176242 ... 192.832539 148.64483 140.629297 70.224927 19.378587 16.91441 7.728932 2.235162 1.814437 0.958545
21 Zhemgang 746.973923 625.409912 774.797194 102.980308 70.053027 51.103372 1668.90101 1271.65639 1831.515131 ... 100.250689 17.653857 12.938589 5.338336 132.826902 111.958915 49.880963 9.143486 5.144942 2.52767
22 Bhutan 25984.867844 23463.411797 40080.821555 713.706252 591.681692 427.076958 25473.412511 20289.342729 30938.640961 ... 1855.318404 1803.937369 1604.840388 857.212856 2513.757916 2273.035528 1122.106441 101.264178 88.561306 37.062198

23 rows Γ— 25 columns

InΒ [15]:
datasets = pd.read_excel("Final_report_tables_2021AS.xlsx")
InΒ [16]:
datasets
Out[16]:
Unnamed: 0 Unnamed: 1 Unnamed: 2 Unnamed: 3 Unnamed: 4 Unnamed: 5 Unnamed: 6 Unnamed: 7 Unnamed: 8 Unnamed: 9 ... Unnamed: 15 Unnamed: 16 Unnamed: 17 Unnamed: 18 Unnamed: 19 Unnamed: 20 Unnamed: 21 Unnamed: 22 Unnamed: 23 Unnamed: 24
0 NaN Irrigated Paddy NaN NaN Upland Paddy NaN NaN Maize NaN NaN ... NaN Barley NaN NaN Millet NaN NaN Quinoa NaN NaN
1 Dzongkhag Sown Area (Acre) Harvested Area (Acre) Production (MT) Sown Area (Acre) Harvested Area (Acre) Production (MT) Sown Area (Acre) Harvested Area (Acre) Production (MT) ... Production (MT) Sown Area (Acre) Harvested Area (Acre) Production (MT) Sown Area (Acre) Harvested Area (Acre) Production (MT) Sown Area (Acre) Harvested Area (Acre) Production (MT)
2 Bumthang 112.732886 108.73793 164.98479 0 0 0 0.95405 0.477025 0.276172 ... 303.913949 322.13337 284.32811 148.17781 2.950391 1.229329 0.983464 0.318016 0.318016 0.19081
3 Chukha 1047.123288 907.49028 1539.711124 55.618929 45.462151 30.29093 1494.45484 1153.47943 1446.529806 ... 121.949055 47.090664 41.795427 20.235387 362.342557 323.000712 147.827759 4.241636 3.50086 1.423413
4 Dagana 2067.202705 1862.639608 2450.662581 30.711222 29.497675 7.568256 2364.611317 1717.412537 2001.271484 ... 86.097623 50.407894 44.798978 19.547031 181.607689 163.633424 79.192313 0.020625 0.020625 0.010313
5 Gasa 96.28023 95.85609 129.405731 0 0 0 0.101794 0.101794 0.102507 ... 0 88.403578 88.403578 78.296633 0 0 0 0 0 0
6 Haa 79.733842 72.28404 87.158778 11.206142 6.8386 2.632024 123.450042 92.860329 111.965722 ... 117.073964 54.164905 45.102258 21.944014 39.273974 33.101017 17.395902 0.493156 0.197262 0.098631
7 Lhuentse 775.698856 732.160847 1344.167739 42.796714 40.82313 37.667299 837.10642 742.14545 1241.239615 ... 0.276344 0.876041 0.265116 0.110465 64.07706 57.423392 37.073985 7.354234 6.173504 2.632887
8 Mongar 510.534181 474.609101 554.94201 32.450064 25.228099 19.3967 3757.768264 3179.649487 4369.035019 ... 37.59116 382.324291 339.815665 176.609771 18.64919 16.287487 7.470507 10.04975 10.046235 4.145776
9 Paro 2064.619382 1943.878563 5174.280382 2.280268 2.280268 0 23.419974 18.906335 9.847969 ... 33.651963 114.616724 105.655364 55.681227 3.391873 2.924622 2.080242 0 0 0
10 Pema Gatshel 13.870687 8.303635 7.839475 7.356314 6.430881 1.425101 1806.791599 1550.323932 4204.505938 ... 47.365862 10.619656 9.554694 5.171116 96.85006 89.922234 48.875159 0.613478 0.613478 0
11 Punakha 3331.304643 3084.985437 6509.573596 9.549422 6.982755 8.213701 159.099818 117.028312 147.753276 ... 28.570123 30.394357 28.523539 14.459545 1.401682 1.401682 0.729066 2.672176 2.672176 1.202479
12 Samdrup Jongkhar 1395.702944 1333.394074 2143.258362 26.978225 26.308587 4.997038 2138.034412 1990.913688 2750.260888 ... 334.525306 53.968285 52.358999 29.430664 78.440588 72.249176 34.631051 2.798599 2.798599 1.250664
13 Samtse 3568.334586 3261.784346 4011.487764 67.874905 56.215996 54.905197 3420.394966 2705.036622 2951.338215 ... 94.483006 11.744996 9.83607 3.599941 637.431767 570.47189 273.184071 12.879199 12.879199 4.322315
14 Sarpang 2986.751896 2672.574141 4202.028646 55.273175 52.259947 16.500786 2082.89788 1538.598138 2265.057124 ... 51.114088 0.652066 0.652066 0.173884 433.458823 401.192128 209.730817 3.154177 3.00658 1.051913
15 Thimphu 271.891408 233.83054 566.02558 3.113676 3.113676 0 42.04696 29.001387 7.944906 ... 4.393637 56.560976 43.13939 21.694171 1.03125 1.03125 0.61875 0 0 0
16 Trashigang 928.779432 822.66838 1505.769389 96.943459 76.607449 76.415062 2132.88839 1665.8931 3493.193651 ... 111.36855 84.675878 66.345809 36.905755 38.042749 34.757382 17.998744 31.968631 29.179726 14.894954
17 Trashi Yangtse 608.720176 538.577089 1014.921947 74.29526 62.987464 69.611825 758.485 622.32144 1520.870188 ... 4.089813 6.244887 5.965558 3.367283 189.462948 184.554054 104.320124 2.219538 2.019649 0.693819
18 Trongsa 1184.652712 989.07941 1573.956888 19.56991 13.912578 14.321315 421.07321 267.77272 467.312492 ... 147.81919 318.37923 281.47903 145.23953 43.195698 36.199705 17.234522 3.883309 2.265264 1.035549
19 Tsirang 1600.505245 1450.540697 1855.405991 45.593114 44.626006 0.629775 2097.007121 1516.746231 1923.444617 ... 37.951542 4.380883 3.252851 1.005365 169.944128 154.782719 65.150071 7.219005 5.910754 0.622459
20 Wangdue Phodrang 2593.454821 2244.607677 4470.44359 29.115146 22.053403 31.398577 143.925444 109.018382 195.176242 ... 192.832539 148.64483 140.629297 70.224927 19.378587 16.91441 7.728932 2.235162 1.814437 0.958545
21 Zhemgang 746.973923 625.409912 774.797194 102.980308 70.053027 51.103372 1668.90101 1271.65639 1831.515131 ... 100.250689 17.653857 12.938589 5.338336 132.826902 111.958915 49.880963 9.143486 5.144942 2.52767
22 Bhutan 25984.867844 23463.411797 40080.821555 713.706252 591.681692 427.076958 25473.412511 20289.342729 30938.640961 ... 1855.318404 1803.937369 1604.840388 857.212856 2513.757916 2273.035528 1122.106441 101.264178 88.561306 37.062198

23 rows Γ— 25 columns