[Your-Name-Here] - Fab Futures - Data Science
Home About
In [4]:
import pandas as pd
import seaborn as sns
sns.set(color_codes=True)
In [5]:
wine = pd.read_csv('wq.csv')
In [3]:
wine.head()
Out[3]:
fixed acidity volatile acidity citric acid residual sugar chlorides free sulfur dioxide total sulfur dioxide density pH sulphates alcohol quality
0 7.4 0.70 0.00 1.9 0.076 11.0 34.0 0.9978 3.51 0.56 9.4 5
1 7.8 0.88 0.00 2.6 0.098 25.0 67.0 0.9968 3.20 0.68 9.8 5
2 7.8 0.76 0.04 2.3 0.092 15.0 54.0 0.9970 3.26 0.65 9.8 5
3 11.2 0.28 0.56 1.9 0.075 17.0 60.0 0.9980 3.16 0.58 9.8 6
4 7.4 0.70 0.00 1.9 0.076 11.0 34.0 0.9978 3.51 0.56 9.4 5
In [4]:
wine.tail()
Out[4]:
fixed acidity volatile acidity citric acid residual sugar chlorides free sulfur dioxide total sulfur dioxide density pH sulphates alcohol quality
1594 6.2 0.600 0.08 2.0 0.090 32.0 44.0 0.99490 3.45 0.58 10.5 5
1595 5.9 0.550 0.10 2.2 0.062 39.0 51.0 0.99512 3.52 0.76 11.2 6
1596 6.3 0.510 0.13 2.3 0.076 29.0 40.0 0.99574 3.42 0.75 11.0 6
1597 5.9 0.645 0.12 2.0 0.075 32.0 44.0 0.99547 3.57 0.71 10.2 5
1598 6.0 0.310 0.47 3.6 0.067 18.0 42.0 0.99549 3.39 0.66 11.0 6
In [6]:
wine.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598
Data columns (total 12 columns):
 #   Column                Non-Null Count  Dtype  
---  ------                --------------  -----  
 0   fixed acidity         1599 non-null   float64
 1   volatile acidity      1599 non-null   float64
 2   citric acid           1599 non-null   float64
 3   residual sugar        1599 non-null   float64
 4   chlorides             1599 non-null   float64
 5   free sulfur dioxide   1599 non-null   float64
 6   total sulfur dioxide  1599 non-null   float64
 7   density               1599 non-null   float64
 8   pH                    1599 non-null   float64
 9   sulphates             1599 non-null   float64
 10  alcohol               1599 non-null   float64
 11  quality               1599 non-null   int64  
dtypes: float64(11), int64(1)
memory usage: 150.0 KB
In [17]:
sns.barplot(x=wine['citric acid'], y=wine['pH'])
Out[17]:
<Axes: xlabel='citric acid', ylabel='pH'>
No description has been provided for this image
In [12]:
sns.displot(wine['pH'])
Out[12]:
<seaborn.axisgrid.FacetGrid at 0xf2e458673230>
No description has been provided for this image
In [18]:
sns.jointplot(x=wine['citric acid'], y=wine['pH'])
Out[18]:
<seaborn.axisgrid.JointGrid at 0xf2e45847fe00>
No description has been provided for this image
In [20]:
sns.jointplot(x=wine['citric acid'], y=wine['pH'], kind="kde")
Out[20]:
<seaborn.axisgrid.JointGrid at 0xf2e44eb67610>
No description has been provided for this image
In [22]:
sns.pairplot(wine[['citric acid', 'pH', 'density']])
Out[22]:
<seaborn.axisgrid.PairGrid at 0xf2e454598ec0>
No description has been provided for this image
In [24]:
sns.stripplot(x=wine['density'], y=wine['pH'])
Out[24]:
<Axes: xlabel='density', ylabel='pH'>
No description has been provided for this image
In [25]:
sns.stripplot(x=wine['density'], y=wine['pH'], jitter = True)
Out[25]:
<Axes: xlabel='density', ylabel='pH'>
No description has been provided for this image
In [28]:
sns.boxplot(x='density', y='alcohol', hue='pH', data=wine)
Out[28]:
<Axes: xlabel='density', ylabel='alcohol'>
/opt/conda/lib/python3.13/site-packages/IPython/core/events.py:82: UserWarning: Creating legend with loc="best" can be slow with large amounts of data.
  func(*args, **kwargs)
/opt/conda/lib/python3.13/site-packages/IPython/core/pylabtools.py:170: UserWarning: Creating legend with loc="best" can be slow with large amounts of data.
  fig.canvas.print_figure(bytes_io, **kw)
No description has been provided for this image
In [29]:
sns.countplot(wine['pH'])
Out[29]:
<Axes: ylabel='count'>
No description has been provided for this image
In [30]:
sns.lmplot(x='alcohol', y= 'pH', data = wine)
Out[30]:
<seaborn.axisgrid.FacetGrid at 0xf2e445465810>
No description has been provided for this image
In [ ]: