< Home
Week 1: Graphical Representation¶
I shall be showcasing all of the given data as graphs for this week.
Code Set Up¶
In [1]:
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv("Baselinedata_Grade VIII E..csv",skiprows=1) # replace with your correct filename
List of Students, Attendance and Topic¶
In [2]:
students_list = df[["Name", "Attendance", "Topic"]]
for index, row in students_list.iterrows():
print(f"{row['Name']} – Attendance: {row['Attendance']} – Topic: {row['Topic']}")
nan – Attendance: nan – Topic: nan Ashish Wakley – Attendance: True – Topic: Climate Change Dorji Tshewang – Attendance: True – Topic: Climate Change Jigme Namgyel – Attendance: True – Topic: Climate Change Kelden Drukda – Attendance: True – Topic: Climate Change Kinga Tobgay – Attendance: True – Topic: Climate Change Kinley Dendup – Attendance: True – Topic: Climate Change Kinley Tshering – Attendance: True – Topic: Climate Change Lekden Thujee Drakpa – Attendance: True – Topic: Climate Change Pema Namgay – Attendance: True – Topic: Climate Change Rinzin Dorji – Attendance: True – Topic: Climate Change Samten Nima – Attendance: True – Topic: Climate Change Sherub Phuntsho – Attendance: True – Topic: Climate Change Sherub Wangchuk – Attendance: True – Topic: Climate Change Sonam Rabten – Attendance: True – Topic: Climate Change Sonam Tobden – Attendance: True – Topic: Climate Change Tashi Yoezer – Attendance: True – Topic: Climate Change Thukten Rigtsel Dorji – Attendance: True – Topic: Climate Change Yonten Yoezer – Attendance: True – Topic: Climate Change Dechen Pem – Attendance: True – Topic: Climate Change Dechen Zangmo – Attendance: True – Topic: Climate Change Dorji Choden – Attendance: True – Topic: Climate Change Jigme Metho – Attendance: True – Topic: Climate Change Kamala Sunar – Attendance: True – Topic: Climate Change Kinzang Lhazin – Attendance: True – Topic: Climate Change Namgay Choden – Attendance: True – Topic: Climate Change Pema Dema – Attendance: True – Topic: Climate Change Pema Wangmo – Attendance: True – Topic: Climate Change Pema Yangchen – Attendance: True – Topic: Climate Change Sangay Choden – Attendance: True – Topic: Climate Change Sonam Choki – Attendance: True – Topic: Climate Change Tenzin Chokey – Attendance: True – Topic: Climate Change Thukten Ngawang Choden – Attendance: True – Topic: Climate Change Tshering Choden S – Attendance: True – Topic: Climate Change Tshering Choden Z – Attendance: True – Topic: Climate Change Tshering Yangzom – Attendance: True – Topic: Climate Change Ugyen Dema – Attendance: True – Topic: Climate Change Ugyen lhaden – Attendance: True – Topic: Climate Change Ugyen Yangzom – Attendance: True – Topic: Climate Change Yeshi lham – Attendance: True – Topic: Climate Change
Student's performance in Exploration, Communication and Creativity¶
In [3]:
columns_to_plot = ["Exploration", "Communication", "Creativity"]
for col in columns_to_plot:
plt.figure(figsize=(7,7)) # Pie charts are usually square
counts = df[col].value_counts()
plt.pie(counts.values, labels=counts.index, autopct='%1.1f%%', startangle=90)
plt.title(f"Student Ratings in {col}")
plt.show()
Overall Performance¶
In [4]:
melted = df[["Exploration", "Communication", "Creativity"]].melt()
overall_counts = melted["value"].value_counts()
plt.figure(figsize=(7,4))
plt.bar(overall_counts.index, overall_counts.values)
plt.xlabel("Overall Category")
plt.ylabel("Number of Students")
plt.title("Overall Performance Summary")
plt.xticks(rotation=20)
plt.show()
In [ ]:
In [ ]: