Philippe Libioulle - Fab Futures - Data Science
Home About

< Previous dataset - Week 2 home - Next dataset>

Week 2: tools - "Restaurant tips" dataset¶

Context¶

  • Source: Kaggle
  • Description: this dataset contains information collected from a restaurant’s bills and tips. It helps analysis how different factors — such as the total bill, gender of the customer, day of the week, meal time, and group size — influence the amount of tip given to the server.

Load dataset¶

In [1]:
import pandas as pd 
import seaborn as sb
import matplotlib.pyplot as plt

df = pd.read_csv("datasets/tip.csv")

# 🧾 Display dataset informations
print("Restaurant tips dataset shape:", df.shape)
#print(df.info)
Restaurant tips dataset shape: (244, 7)

Explore content¶

In [2]:
df.head()
Out[2]:
total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4

Display a nice chart¶

In [7]:
sb.catplot(x="day", y="tip", kind="swarm", data=df.sample(100))
Out[7]:
<seaborn.axisgrid.FacetGrid at 0xe13cbc52f390>
No description has been provided for this image
In [8]:
sb.catplot(x="sex", y="tip", kind="swarm", data=df.sample(100))
Out[8]:
<seaborn.axisgrid.FacetGrid at 0xe13cbc339810>
No description has been provided for this image
In [ ]: